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The Delaunay tessellation in n-dimensional space is a space-filling aggregate of n-simplices. These
n-simplices are the dual forms of the vertices in the commonly used Voronoi tessellation. Several
efforts have been made to simulate the 2-dimensional Voronoi tessellation on the computer.
Additional problems occur for the 3 and higher dimensional implementations but some of these can
be avoided by alternatively computing the dual Delaunay tessellation. An algorithm that finds the
topological relationships in these tessellations is given.
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1. Introduction

The Delaunay tessellation, in 3-dimensional space, is an
aggregate of space-filling, disjoint, irregular tetrahedra and may
be thought of as a particular 3-dimensional triangulation. In
2-dimensional space it is an array of triangles. Such a tri-
angulation provides an essential step for spatial analysis of
punctulate data. Contouring programs usually require infor-
mation concerning the degree of consanguinity amongst the
data points, such as a grid or triangulation, before com-
parisons of the functional values at these data points are
meaningful.

The Delaunay triangulation is also the geometric dual of the
Voronoi tessellation. This tessellation has been used as a model
in many areas of applied science. In particular, it is assumed to
approximate the interface network in polycrystalline materials.
To use it in this manner, the Voronoi tessellation must be
considered to be a finite sample taken from an infinite popula-
tion of which it is typical. However, in this respect, its form is
not well known in > 3-dimensional space.

This paper presents an algorithm for computing the structure
of the Delaunay n-dimensional triangulation for any stochastic
array of data points. Such an algorithm can be used to find all
of the adjacency relationships amongst N data points by tri-
angulation in n-dimensions and in time of O(NIGZr-1D/sl)
provided that the N data points are partially ordered.

Further, the structure of the dual Voronoi tessellation is
immediately obtained by geometric conversion. However, only
those Voronoi domains strictly interior to the Delaunay
tessellation are available since the boundary of the Delaunay
tessellation yields only partial information on the Voronoi
structure used as a polycrystalline model.

1.1 The Delaunay Structure
The defining points, or nuclei, of the 3-dimensional Delaunay
tessellation lie at the vertices of the tetrahedra. Several tetra-
hedra will share an edge and even more will share a vertex. The
four vertices of each tetrahedron lie on the surface of a sphere
and no other vertex of the array lies within that sphere (see
Miles, 1970, p. 107). This is because the centre of the sphere is
in the position of a vertex in the dual Voronoi tessellation, and
this vertex is by definition equidistant from the four nuclei.
This description for 3-dimensional space is readily extended
to n-dimensional space. Thus the tetrahedron, or 3-simplex,
becomes an n-simplex. Likewise, the n + 1 vertices of each
n-simplex lie on the (n — 1)-dimensional surface of an n-
dimensional hypersphere. The centre of that hypersphere, the
simplicial circumcentre, is a vertex in the dual n-dimensional
Voronoi tessellation. In all cases the n-simplices of a Delaunay

tessellation are space-filling and disjoint, while for stochastic
arrays of defining nuclei they are also uniquely defined.

1.2 The Voronoi Structure

A Voronoi tessellation partitions n-dimensional space into
convex polytopes and may be thought of as a network of inter-
faces formed by impingement of expanding hyperspheres,
centred at the nuclei, and growing at a constant rate from time
zero. Thus some (n + 1)-tuples of such hyperspheres meet a
mutual conclusion at a point which is equidistant from the
n + 1 nuclei. That point is a vertex in the Voronoi tessellation.
Therefore these (n + 1)-tuples of nuclei may be used to define
a vertex in a Voronoi tessellation, or equivalently, an n-simplex
in a Delaunay tessellation.

According to Sommerville (1927, p. 106), the numbers of
i-dimensional domains on an n-simplex is ,,,C;;, for
0 < i < n. Then, since the geometrical dual in n-dimensional
space of an i-dimensional domain is an (n — i)-dimensional
domain, we know the numbers of (» — i)-dimensional domains
that include a 0-dimensional domain, or vertex, in a Voronoi
tessellation is ,,,C,_;. This duality means that the total of
n-simplices incident to a given nucleus in a Delaunay tessel-
lation is equal to the number of vertices on the dual Voronoi
domain associated with that nucleus. The total of n-simplices in
common with a given neighbouring nucleus is the number of
vertices on the (» — 1)-dimensional face formed with that
neighbour in the dual Voronoi domains. Similar remarks
apply to other such values.

1.3 Previous Work

The theoretical properties of the Voronoi planar tessellation
have been established by Miles (1970, p. 103). A computer
simulation, of the space-filling members of an aggregate in the
plane, was accomplished by Crain (1972). He generated
individual polygons and tabulated their measurements to form
histograms and estimate ergodic moments.

Various algorithms have been used to find the boundaries of
the Voronoi polygons. Knowing that the nearest neighbouring
nucleus to some given nucleus must form an interface, one may
proceed by tracing a pathway, always in the same rotational
direction, around each polygon, as was done by Rhynsburger
(1973, p. 141). A more sophisticated approach by Green and
Sibson (1978, p. 170), traces the boundary adjustments
required as a new nucleus, and thus a new polygon, is fitted into
an established aggregate.

Perimeter tracing, however, though a principal technique for
the plane, does not adapt to > 3-dimensional space. Calling on
the mathematical definition of the Voronoi domain as an inter-
section of half-spaces (see Rogers, 1964, p. 74), the 3-dimen-
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sional tessellation may be computed by finding the interfaces
with each neighbour and assembling the results. This approach
was used by Watson and Smith (1975, p. 110), where the points,
or nuclei, were distributed in the unit cube. Then for each
point taken in turn, the perpendicularly bisecting plane with
each other point was used to eliminate a portion of the cube.
The portion remaining is the Voronoi polyhedron, associated
with that particular nucleus, as defined by the intersection of its
facial planes.

That procedure is a straightforward technique for single
domains but involves duplicated calculations when used as the
initial steps to assemble an aggregate. For example, the 3-plane
intersection at a vertex of a Voronoi domain in 3-space must be
calculated for four different domains before it can be fitted into
the aggregate. To keep a list of such vertices for each Voronoi
domain means that a vertex will appear in four such lists, but it
will not necessarily be in numerically identical form as a result
of digital truncation. Even maintaining a list of neighbours for
each point requires a given relationship to be tabulated twice.
Additionally, search times for determining relationships grows
non-linearly. Short cuts for storing and searching are sparse
because of the large and variable number of elements and links
for each domain. For higher dimensions, these considerations
tend against the possibility of meaningful results.

Fortunately, the dual Delaunay tessellation is less difficult, as
was pointed out by Boots (1974, p. 26). Each Delaunay n-
simplex may be represented by an (n + 1)-tuple of indices to
the nuclei and all of its topological elements may be designated
or enumerated by using the combinatorial properties of
the n-simplex. The search for relationships is just the search
for duplicate combinations of indices.

2. Difficulties

2.1 Non-valid Vertices

Problems, of course, occur in several areas. The first obvious
difficulty is in determining which (n + 1)-tuples of nuclei to
keep or reject. In other words, we want to select particular
minimal clusters of data points that are immediately adjacent.
An (n + 1)-tuple is the smallest cluster of data points that
provides an n-dimensional hull. The number of combinatorially
possible (n + 1)-tuples is yC,,,. Most of these are not real
possibilities and for large numbers of data points, this is more
than can be examined in a reasonable time, even in 2-dimen-
sional space. Criteria such as shortest diagonal or greatest
minimum angle have been used to discriminate between
3-tuples in planar studies. These criteria become somewhat
involved in dimensions greater than two because the sum of the
internal angles at the vertices of the n-simplex is not a constant
as it is in 2-space.

However, the solution to this problem is, in theory, relatively
easy. Simply by choosing only those (n + 1)-tuples that lie on
n-dimensional hyperspheres which contain no other nuclei
assures us of the correct result in all cases. This must be so
because if any other nucleus is within some circumsphere
defined by some n + 1 nuclei, then it is closer to the circum-
centre than those n + 1 nuclei are, and a vertex in the Voronoi
tessellation could not occur for those particular n + 1 nuclei.
In effect, from the set of all combinatorially possible (n + 1)-
tuples we reject all (n + 1)-tuples with non-empty
circumspheres.

Now if we are given an initial aggregate of one or more n-
simplices whose circumspheres are empty, we may introduce
additional data points by observing which circumspheres are
intersected. Then for each such intersected circumsphere,
replace the n-simplex with all possible n-simplices formed from
these n + 2 data points on condition that each new n-simplex
has an empty circumsphere. The logic for this approach is
shown in Fig. 1. When a new nucleus is introduced in this
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Fig. 1 Logic for finding all n-simplices with empty circumspheres

manner, the aggregate must remain a Delaunay tessellation
since all circumspheres remain empty.

Fig. 1 shows that there are three main computational steps.
The steps marked A and A’ both search for nuclei that inter-
sect circumspheres but in opposite senses. At A we check all old
circumspheres against a new point while at A’ we check all old
points against a new circumsphere. The calculation marked B
solves n linear equations in #n unknowns.

2.2 Degeneracies

The main difficulty with this approach, however, concerns the
so-called degenerate vertices in the Voronoi tessellation.
Following Sibson (1978, p. 243), who expresses a degeneracy as
the case when more than three domains meet at a vertex in
2-dimensional space, we consider the nth order degeneracy as
the case when more than n + 1 Voronoi n-dimensional
domains appear to share a vertex. Lower order degeneracies
may also occur, for instance, when more than three 3-dimen-
sional domains share an edge in 3-space, or in general, more
than n + 1 — i n-dimensional domains share an i-dimensional
domain in n-space.

It will be noted, however, that the existence of a lower order
degeneracy requires the existence of nth order degeneracies.
This is readily observed in the case where four 3-dimensional
polyhedra share an edge and therefore at least five polyhedra
must share each vertex at the ends of that edge. It is also true in
the general case; suppose that, for 1 < j < n,j + 2 nuclei lie on
the (j — 1)-dimensional surface of a j-dimensional hypersphere.
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That j-dimensional hypersphere is a section of an infinite
number of (j + 1)-dimensional hyperspheres. Any other
nucleus will therefore form a (j + 3)-tuple of nuclei which will
lie on the surface of a (j + 1)-dimensional hypersphere of
which the j-dimensional hypersphere is a section. Thus, by
induction on j, an nth order degeneracy must occur whenever a
lower order degeneracy occurs. Therefore any method that
detects all nth order degeneracies will also find any lower order
degeneracies.

In theory, the possibility of j + 2 points, for 1 < j < n, froma
stochastic distribution occurring on the surface of an j-
dimensional hypersphere has probability almost surely zero.
There is, however, a small but finite probability for this situation
in digital computation because of numerical truncation and it
may occur for any configuration, not merely squares or
rectangles as Boots (1974, p. 26) suggests.

For geometric rigour, however, five points that may appear to
lie on the surface of a 3-dimensional sphere must be partitioned
into 4-tuples. This will produce either two or three 4-tuples.
For an illustration, consider the five points A, B, C, D and E.
Let A and E hold relative pole positions and B, C and D be
equatorial in any approximate sense. Then either the two 4-
tuples (A, B, C and D) and (B, C, D and E) or the three
4-tuples (A, B, C and E), (A, C, D and E) and (A, B, D and E)
will lie on empty circumspheres.

In the general case, if a newly introduced nucleus lies ambigu-
ously on the (n — 1)-dimensional surface of a circumsphere
defined by some other n + 1 nuclei, then there are two pos-
sible outcomes. Either the additional nucleus is outside the
circumsphere and forms from 1 to n — 1 additional n-simplices
with some (n — 1)-dimensional faces of the first n-simplex, or
the new nucleus is inside the circumsphere. Then the old
n-simplex must be rejected and from 2 to n new n-simplices are
formed with some (n — 1)-dimensional faces of the old simplex.
The number of new n-simplices to be formed in either case
depends on the relative orientation of the new nucleus with
respect to the old n-simplex. It is essentially a question of how
many (n — 1)-dimensional faces of the old n-simplex that the
new nucleus can see or not see, respectively.

The problem of such apparent degenerate forms occurs
whenever the distance from a new nucleus to the surface of a
circumsphere is within the expected accumulated truncation
error bounds. Note that we may not simply make an arbitrary
choice as Green and Sibson (1978, p. 171), may do in 2-space,
because this would not resolve any lower order degeneracies
that may exist. For regular arrays of nuclei, the Voronoi
vertices may be truly degenerate and then the Delaunay
tessellation is non-unique.

2.3 Computational Aspects

There are two related considerations to computation in this

approach.

(i) The Voronoi vertex, or simplicial circumcentre of an
(n + 1)-tuple of nuclei, is the intersection of the ,,,C,
(n — 1)-dimensional hyperplanes that perpendicularly
bisect the line segment joining any two nuclei in the
(n + 1)-tuple. So we must solve a set of simultaneous linear
equations. This is the step marked B in Fig. 1. If these hyper-
planes define a small included angle with each other the set
of equations may be ill-conditioned.

(ii) Errors due to truncation in the operations of the search for
intersection of hyperspheres may lead to incorrect rejection
or acceptance of a given (n + 1)-tuple while not making a
compensating error in its immediate environment. Such is
the case when the decisions reached at steps A and A’ in
Fig. 1 are contradictory. This produces structural inconsis-
tencies (see Green and Sibson, 1978, p. 171) and the
aggregate may be observed to lose its disjoint property.

© Heyden & Son Ltd, 1981

These problems may be avoided by rejecting data beyond the
software resolution and by evading the need for the search at
A’. That search is not necessary if we save all the (n — 1)-faces
of the deleted n-simplices and, ignoring pairs, forming the new
n-simplices with all singly occurring (n — 1)-faces only after all
old circumspheres have been checked for intersection. This is
justified by observing that all of the n-simplices whose circum-
spheres contain the new nucleus must form a simplicial n-poly-
tope, with all the old nuclei being on its boundary. Only the
(n — 1)-faces that are on this boundary will form new n-
simplices with the new nucleus which is in the interior of the
simplicial n-polytope. All of the other (n — 1)-faces on the old
n-simplices are interior to the simplicial n-polytope so would
form n-simplices, with the new nucleus, that overlap those
formed with the boundary (n — 1)-faces. We may be sure that
the new hyperspheres thus formed will not intersect any nuclei
outside the simplicial n-polytope because the new nucleus
would have intersected any old hypersphere involving those
nuclei.

By these means the correct (n + 1)-tuples appear directly as a
result of the search for intersected circumspheres without
requiring the search at A’ in Fig. 1 or the computation of
circumcentres for non-valid (» + 1)-tuples. However, a point
that occurs outside the existing simplicial complex, even though
it intersects some circumspheres, will not compute correctly
because it is not interior to the simplicial n-polytope.

2.4 Boundary Effect

Another problem, commonly known as the boundary effect,
occurs on the Voronoi tessellation when, for instance, it is used
as a model of polycrystalline materials. It is due to the altered
ratios amongst the vertices, edges, faces and higher dimensional
elements that appear on the surface of an aggregate relative to
its interior. Also, because of the decreased density of nuclei at
the boundary of a finite set, there is a shape distortion in the
boundary polytopes that would not appear in the infinite array.
This results in a statistical bias when boundary polytopes are
included in a histogram. The solution almost always seems to
be based on the principle of ignoring all information from out-
side an arbitrary limit or window, but alternatively this
may be done by flagging domains that are incident to the
boundary of the aggregate.

3. Efficiency

Several means of improving the efficiency of this approach may

now be applied.

(i) If the chronological input order of the nuclei is maintained
in each (n + 1)-tuple of indices, then the search for
duplicate sets reduces to the search for duplicate ordered
sets. This search is necessary for finding doubly occurring
n-tuples and to establish other particular values such as the
number of edges.

(ii) Also, since the radii of the circumspheres is used only in
comparison, the squares of these values may be used to
save the time of root extraction.

(iii) Then the searches for intersected circumspheres is thus
also made more efficient by subtracting squared com-
ponents of the nucleus to circumcentre distance from the
squared radius. When the squared radius goes negative
we know that the new nucleus is not within the circum-
sphere and this will often occur before all squared
components have been subtracted.

(iv) To prevent storage and search times growing non-
polynomially, we can progressively eliminate some of the
boundary data if all the remaining input will still be
interior. Then we can overwrite those data points and their
associated (n + 1)-tuples for which computing is complete
while still maintaining the correct environment to compute
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new relationships. One way of achieving this is by a pre-
processing which orders the data with respect to the first
component. Then if the squared radius goes negative after
the first subtraction, that particular circumsphere cannot
be intersected by any of the remaining data points so
computing is complete for that (n + 1)-tuple.

4. The Algorithm

4.1 Theoretical Framework

The discussion above may be condensed to form a theoretical
basis for the algorithm. Given any stochastic array of data
points, there exists a unique Delaunay tessellation of those
points such that the j-dimensional circumsphere coincident to
the vertices of any j-simplex in the tessellation has no data point
in its interior.

A new data point may be introduced to any Delaunay tessel-
lation by observing which circumspheres are intersected. All of
the old n-simplices whose circumspheres contain the new data
point form a simplicial n-polytope, with all of the old data
points, (of the intersected circumspheres), lying on its (n — 1)-
dimensional boundary. These old n-simplices will be replaced.
The new point is interior to the simplicial n-polytope and forms
new n-simplices with each of the boundary (» — 1)-simplices.
The circumspheres of these new n-simplices will not intersect
any of the other data points because these other points all lie on
circumspheres not intersected by the new point. The tessellation
remains a Delaunay tessellation because all circumspheres
remain empty. The order in which the points are introduced
does not affect the final configuration because that depends
only on the number and position of the data points in the
complete set.

If an arbitrary point fails to intersect any of the circumspheres
in a Delaunay tessellation then the existing tessellation is not
altered. However, new Delaunay n-simplices now exist between
the arbitrary point and some of the (n — 1)-simplices on the
boundary of the old structure. If n + 1 arbitrary points are
added to the data set in this manner, the Delaunay n-simplices
that tessellate the data set can be completely bounded by
Delaunay n-simplices that include at least one of the arbitrary
points.

Starting with n + 1 arbitrary points, known to form an
n-simplex whose convex hull contains the whole data set, the
structure of the Delaunay tessellation may be computed by
adding the data points in an ‘advancing front’ sequence. The
tessellation remains a Delaunay tessellation at all times. The
Delaunay n-simplices behind the advancing front are in their
final configuration while those ahead of the front are subject to
alteration.

Any data point found to be in non-general position is rejected
because it leads to a non-unique tessellation. A point is in non-
general position when the resolution of the software is not
sufficient to determine whether or not an intersection with a
given circumsphere has actually occurred.

The Delaunay n-simplices of the data set are distinguishable
from the bounding Delaunay n-simplices because the latter have
at least one of the arbitrary points as a vertex. The Voronoi
polytopes associated with the interior points of the data set are
distinguishable from those associated with data points on the
boundary because the latter share an n-simplex with at least one
arbitrary point.

To implement this theory, the algorithm manipulates and
maintains a list of (n + 1)-tuples of indices to the nuclei or data
points. These (n + 1)-tuples represent Delaunay n-simplices.
Each (n + 1)-tuple of indices is associated with an (n + 1)-
tuple of real values being the coordinates of the simplicial
circumcentre and the square of the circumsphere radius.

4.2 Initialisation
The algorithm assumes an initial aggregate of n-simplices,
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where each n-simplex has an empty circumsphere. These
implementations used the vertices of an orthogonal n-simplex.
Any n-simplex would do as well, but it must be large enough to
enclose the complete range of input points. The vertices of this
simplex serve as boundary indicators since any (n + 1)-tuple
that includes one or more of these initial vertices must lie on
the boundary.

4.3 Operational Steps

For each data point to be introduced, sequentially search the
list of (n + 1)-tuples to find all circumspheres that contain the
new point. This point must fall within some of the circum-
spheres for they enclose the n-simplices which are space-filling.
For each such intersected circumsphere, flag the (» + 1)-tuple
to indicate deletion of the associated n-simplex. The search is
made by subtracting squared components of the new data
point to circumcentre distance from the squared radius. Since
the data are ordered by the first component, a negative result to
the first subtraction indicates a completed (n + 1)-tuple.

Then each (n — 1)-face of the n-simplices whose circumspheres
have been intersected, that is, each possible n-tuple of nuclei
from each (n + 1)-tuple, is saved on a temporary list. If any
(n — 1)-face is found to occur twice, both occurrences are
dropped from the list since this face is shared by two adjacent
n-simplices. This means that it is interior to the simplicial
n-polytope formed by all n-simplices whose circumspheres have
been intersected by the new nucleus. If the new nucleus falls
within the limits of the expected accumulated truncation error
of any circumsphere, the temporary list and the new nucleus
are abandoned but alternate treatment such as recalculating the
circumcentre by a higher precision routine could be used here.
If such an ambiguity does not appear, new n-simplices are then
formed with each of these singly occurring (» — 1)-faces and
their circumcentres are calculated. By maintaining a count of
the n-simplices incident to each nucleus and decrementing for
each completed n-simplex, completed nuclei will show a zero
count. Completed nuclei and (n + 1)-tuples are replaced as
their indices appear on first-in-first-out stacks.

That completes the operations for insertion of a new nucleus
into the tessellation.

4.4 Storage and Execution Time

Since the N data points are ordered by their first component,
we effectively compute a local (n — 1)-dimensional section
through the data. If the data space is equidimensional, storage
will be proportional to N~ 1" Then execution time for the N
data points will be better than proportional to N7~ /",

4.5 Voronoi Interpretation

To convert these completed (n + 1)-tuples to particular Voronoi
polytopes, a list of indices of uncompleted nuclei with a count
of incident n-simplices is maintained. If any nucleus is found to
share an n-simplex with any of the initialisation vertices, it is
dropped from the list. As each (n + 1)-tuple is completed, the
n-simplex count for each of its » + 1 nuclei is decremented and
information such as circumcentre coordinates is recorded. Each
polytope is complete when the n-simplex count for its nucleus
has been decremented to zero.

4.6 Computing in Linear Time

The remarks above apply to the determination of the structure
of a given set of data points as interpreted by the Delaunay-
Voronoi tessellation. For investigations of the Delaunay-
Voronoi structure itself, the algorithm may be adapted to run
in linear time.

In this case, random points are generated within the unit
n-cube. The boundary of that n-cube is considered to be a
‘window’ about the data. The initial n-simplex completely
encloses the unit n-cube. Then as in Section 4.2, with each
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Fig. 2 Naked eye inversion stereopsis diagram of Delaunay tetrahedra surrounding a nucleus (fine lines), and the associated Voronoi polyhedron
(bold lines). Hold at easy arm’s length and allow the eyes to cross slightly. When three images appear, observe the central one.

newly generated point, we search for intersection with existing
hyperspheres, find the simplicial n-polytope and form the new
(n + 1)-tuples.

Once a preset number of nuclei, say k, have been triangulated
within the bounds of the window frame, and before each
subsequent new point is introduced, the size of the window is
reduced by a factor of magnitude inversely proportional to k.
This reduces the range in which the new points may appear and
may bring some earlier generated points outside of the window
frame. These are then flagged as external points. Then any
n-simplex having at least one of its nuclei flagged is known to
lie in the boundary zone. Any new nucleus that fell within the
circumsphere of such an n-simplex must have a portion of its
Voronoi domain on the boundary, so it is not recorded. As
soon as an (n + 1)-tuple has its circumsphere completely
outside the window, it cannot be intersected and is flagged as
external also. External nuclei and (n + 1)-tuples are replaced as
their indices appear on first-in-first-out stacks.

In this manner the type and number of relationships of a
newly generated nucleus in the interior of the aggregate may be
observed repeatedly without introducing surface bias. Then the
execution time will be O(kN).

5. Testing

Several methods were found to test the algorithm. In the 2-
dimensional case, the increase in the number of triangles per
added nucleus must be exactly two. This is because for any
cluster or aggregate of Delaunay triangles, with all vertices on
the perimeter, another triangle may be appended with one face
only being interior and thus yields an increase in boundary
edges of one. Therefore there are always two more edges than
triangles. If a new nucleus intersects all the circumcircles of
these triangles, it must form new triangles with each of the
perimeter edges of the initial cluster. The net gain is two
triangles.

In the 3-dimensional case, the number of tetrahedra incident
to any nucleus is always an even number. This is because
another tetrahedron may be appended to the aggregate of
Delaunay tetrahedra, with all vertices being on the exterior,
with either one or two faces being interior and thus alter the
number of faces on the boundary by two or zero. So the number
of boundary faces is at least four and always remains even.

In the 4-dimensional case, the increase in the number of 4-
simplices when a new point is introduced is always an even
number. That is, the difference between the number of 4-
simplices in the aggregate and the number of 3-simplices on its
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boundary is even. By similar reasoning as was used above, this
is because the appending of another 4-simplex to an aggregate
of 4-simplices, with all vertices on the boundary, must change
the number of 3-dimensional faces on that boundary by an odd
number. Note that a 4-simplex has five 3-dimensional faces.
One, two or three of these may be internal to the aggregate and
thus change the number on the boundary by 3, 1 or —1
respectively. Four of the 3-dimensional faces could not be
internal since no vertex is internal. Thus the difference between
the number of 4-simplices in such an aggregate and the number
of 3-dimensional faces on its boundary must always be an even
number. These values were therefore scanned for violations
and none were found.

All (n — 1)-faces of the Delaunay tessellations were listed to
expose more or less than two occurrences. That would be the
case if some n-simplices overlapped or were missing.

Naked eye inversion stereopsis, Speakman (1978, p. 827), has
been used to display the 3-dimensional Delaunay configuration
about a particular nucleus and its associated Voronoi poly-
hedron (see Fig. 2), as calculated by the algorithm. The use of
naked eye inversion stereopsis is simply that of allowing the
binocular lines of sight to intersect at the normal position for
reading, while holding the page beyond that point so that the
computed inversion stereo images will blend to form a 3-
dimensional image between the eyes and the page. This
display function was useful for debugging.

6. Implementations

Versions of 2-, 3- and 4-dimensions of the polynomial time
form of this algorithm, with Voronoi interpretation, were
implemented on the Control Data Cyber 170-730. Each re-
quired less than 200 FORTRAN statements, including I/O.
The 2- and 3-dimensional versions were run for 3000 input
points and the 4-dimensional version was run for 600 points.
Execution time was found to increase more slowly than
N@n=Dinand storage increased as N~ /", They ran at a rate of
approximately 0-01, 0-25 and 8:5 s per interior nucleus,
respectively. Additionally, these three programs were stripped
of 1/O and Voronoi conversion code. The Delaunay tessel-
lations were then computed on this machine at a rate of 107, 5,
and 0-35 nuclei s~ !.

Additionally, 2-, 3- and 4-dimensional versions of the linear
time algorithm were also run on this machine and generated
interior Voronoi polytopes at an approximate rate of 0-05, 1-8
and 5 s per polytope.
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Book reviews

Cluster Analysis Algorithms by H. Spath, 1980; 226 pages. (Ellis
Horwood, £15-50)

This is a translation of a book which first appeared in German in
1975 with a slightly revised edition in 1977. It is attractively packaged
and a quick flip through reveals plenty of diagrams and FORTRAN
algorithms. This ‘feet on the ground’ impression unfortunately does
not survive closer inspection. The author is a professor of mathe-
matics and expects his readers to know about Ly norms, mappings,
matrices and the like. Distance measures are introduced as formulae
with little verbal back up and much more space is devoted to
proving that certain measures are indeed metrics than to discussing
which measures are best to use in practice. At one point we find the
amazing guidance “Those [methods of scaling data] for which the
clusters are particularly easy to interpret are regarded as meaningful”.

The algorithms are at least clearly printed, but they are inadequately
commented, insufficiently protected, use the numerically inaccurate
way of calculating corrected sums of squares and are (once, at least,
on p. 54) wrong. The hierarchical methods do not allow output of
dendrograms. The data sets used to illustrate the various techniques
are all, unfortunately, German. This is mildly inconvenient when the
positions of German towns are being clustered, but when the reader
is left to interpret the results of a clustering of Bavarian postal zones,
this reader for one felt somewhat irritated.

The bibliography covers seven pages and includes most key
references. There is, however, no mention of Wishart’s CLUSTAN
package, GENSTAT or the BMD programs. The only references
later than 1975 are to the author’s own publications.

All in all, then, this book adds very little to the literature and has
little advantage over existing ones. My own favourite is Clustering
Algorithms by J. Hartigan.

P. R. FrReeMAN (Leicester)

Programming via Pascal by J. S. Rohl and H. J. Barrett, 1980; 327
pages. (Cambridge University Press, £12-50, £5-95 paper)

This book is developed from a series of lectures and is organised so
that each of the 24 chapters covers enough material for one lecture,
hence students using the book should find topics presented in nice
bite-size chunks. The whole of the language is mentioned, although I
found some of the presentation somewhat cursory. In general,
language features are introduced by example of their use with syntax
diagrams steadily being built up as the subject unfolds. At the end of
each chapter exercises are given which not only involve writing pro-
grams, but also ask the reader to do the very important task of
amending programs too. Most of the exercises have a numerical
flavour but a payroll program is also developed.

Despite the title of the book, the authors do not present much in
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the area of program design, this they claim (and I agree) is probably
best done by discussion with an instructor. However, it does limit the
utility of the book for those doing self-study of the subject. There are,
however, two good but short chapters on testing and efficiency. The
book also misses out on the wider view of programming, only a
small mention is made of data structure design and documentation is
virtually ignored.

In the end, whether you like the book or not will depend on how
you see programming, in my view, two vital topics which should be
introduced very early in a course are records and procedures, here
they are not introduced until Chapters 15 and 16, respectively.
Similarly, arrays which I do not consider too important at the early
stages are introduced in Chapter 8 whilst files are left until Chapter
22,

In summary, I consider the book could make useful back-up
reading to first year undergraduate Pascal courses but whether it is
recommended will depend (as always) on the teacher’s prejudices. In
my case I will stick on Laurence Atkinson’s book.

D. SimMpsoN (Sheffield)

Online Searching: An Introduction by W. M. Henry, J. A. Leigh,
L. A. Tedd and P. W. Williams, 1980; 209 pages. (Butterworth,
£12-00)

Those whose primary concern is computer science or programming
will find little of direct interest here. They may, however, be fascina-
ted by a 76 page summary of commercially asscessible bibliographic
data bases which includes details of size, search cost and updating
frequency of most of the collections, together with summaries of the
command languages available for searching these collections on-line.
For the information officer or librarian who has not yet come to
grips with automated information retrieval, or who is dissatisfied
with the limited facilities he has available, this is an outstanding
general introduction. It is characterised by breadth of treatment,
clarity and conciseness, and obviously reflects extensive practical
experience. There is just enough detail to give the reader a genuine
feel for the practicalities of on-line access to bibliographic data and
the environment in which it is used. Though future developments are
discussed, the reader’s feet are always comfortably on the ground;
despite the rate of development and the rate of inflation, the authors
have wisely chosen to use examples from currently operational
systems and to quote financial costs. Books of this kind often outlast
intended ‘evergreens’ which, by generalisation and prognostication,
obscure rather than expound the state of the art. Regrettably, the
price may put this fine scene-setting book out of the reach of most

information science and librarianship students.
J. INGLis (London)
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