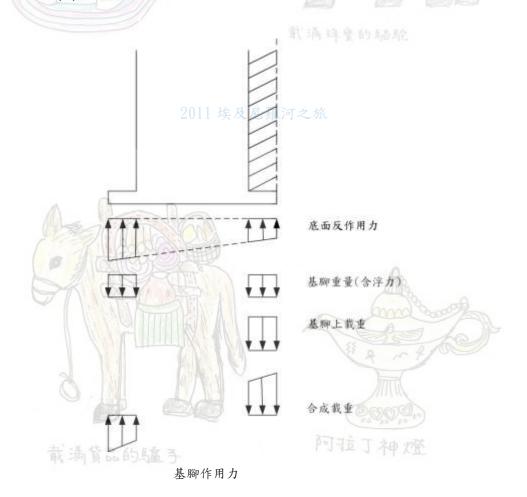
沉箱設置完成後基腳設計載重(極限狀態設計法)

(1) 作用於基腳外力


① 静穩時合成載重 $W_o = R + S + D$

R: 静穩時底版反作用力

S: 設計潮位靜水壓

D: 永久載重(基腳重量(含浮力)及基腳上的輕載重)

- ② 波壓作用時底版反作用力(R')
- ③ 波引起底版反作用力變動載重 $(\Delta R = R' R)$
- ④ 上揚力(U)

(2) 設計載重

設計載重為各載重乘以各極限狀態的載重係數。

i. 最終極限狀態

隨波峰或波谷作用,及W與 ΔR 的作用方向的不同,分別表列公式計算設計載重。

9	波峰	Δ R \uparrow	w ↑	$P = 1.1D + 1.2\Delta R + 1.3U$	1
THE CAN CAN CAN	作用	Δ R \downarrow	w ↑	$P = 1.1D + 0.8\Delta R + 1.3U$	2
			w ↓	$P = 0.9D + 1.2\Delta R + 0.7U$	3
	波谷	Δ R \uparrow	W ↑	$P = 1.1D + 1.2\Delta R + 0.7U$	4
			W \	$P = 0.9D + 0.8\Delta R + 1.3U$	5
	作用	Δ R \downarrow	W ↑	$P = 1.1D + 0.8\Delta R + 0.7U$	6
			W↓	$P = 0.9D + 1.2\Delta R + 1.3U$	7

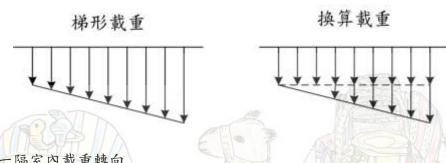
對③及⑦式,因不可能得到大於 1.1R 的值,故當 1.2 $|\Delta R|$ > 1.1 $|\Delta R|$ 時, ③及⑦式以下式計算。

③式:
$$P = 0.9D + 1.1|\Delta R| + 0.7U$$

⑦式:
$$P = 0.9D + 1.1 |\Delta R| + 1.3U$$

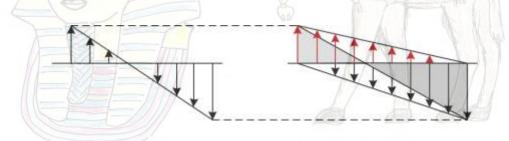
ii. 使用極限狀態

使用極限狀態時,不論波峰或波谷作用,不論W與 ΔR 的作用方向,均以下式計算設計載重。

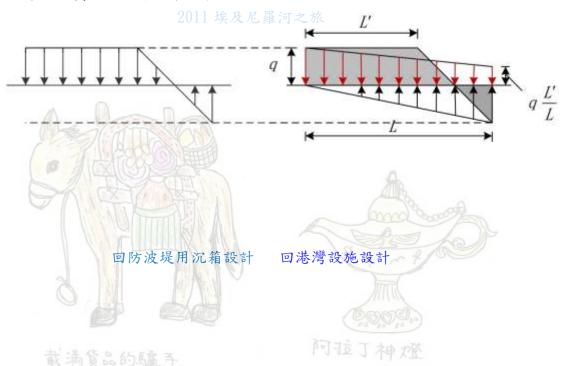

$$P = 1.0D + 1.0\Delta R + 1.0U$$

(3) 換算設計載重

首先依上式將設計載重計算出,再依下述載重換算原則換算成矩形或三角形載重。


梯形載重量量

梯形載重時,如下圖分割成矩形及三角形載重


⑤ 同一隔室內載重轉向

在同一隔室內載重方向轉向時,可換置成2個不同作用方向的三角形載重。

ⓒ 任意形狀載重

任意形狀載重依下圖進行換算。

